Discovery through Automation

Luca Cardelli, University of Oxford QAVAS Oxford, 2021-09-28

Outine

- The Scientific Method

Its eventual automation

- Models (that know nothing about protocols)

Chemical Reaction Networks

- Lab Protocols (that know nothing about models)

Digital Microfluidics

- Integration

Closed-loop modeling and protocol execution The Kaemika App

The Scientific Method

Hasan Ibn al-Haytham (1027) Book of Optics
Galileo Galiei (1638) Two New Sciences

Discovery through Automation

The Inner Loop

- A model is refined by testing a (fixed) protocol against a systems
- A protocol is refined by testing a (fixed) model against a systems
- Today: publication does not accurately reflect execution
- Model:
poorly-maintained matlab script
- Protocol: poorly-described manual steps in the lab
- System: poorly-characterized and hardly "resettable"
- \Rightarrow Crisis in biology: experiments are done once and are hard to reproduce
http://www.nature.com/news/reproducibility- 1.17552

Models

(those things that know nothing about protocols)

Chemical Reaction Networks (CRN)

$$
X+Y->r Z+W
$$

- A phenomenological model of kinetics in the natural sciences

By (only) observing naturally occurring reactions

- A programming language, finitely encoded in the genome

By which living things manage the unbounded processing of matter and information

- A mathematical structure, rediscovered in many forms

Vector Addition Systems, Petri Nets, Bounded Context-Free Languages, Population Protocols,

- A description of mechanism ("instructions" / "interactions") rather than behavior ("equations" / "approximations")

Although the two are related in precise ways
Enabling, e.g., the study of the evolution of mechanism through unchanging behavior

Programming Examples

spec
$Y:=2 X$
$Y:=\lfloor X / 2\rfloor$
$Y:=X 1+X 2$
XI -> Y
XL -> Y
$Y:=\min (X 1, X 2)$
$X 1+X 2$-> Y

Advanced Programming Examples
 spec
 program

$$
Y:=\max (X 1, X 2)
$$

$$
\begin{array}{ll}
X 1->L 1+Y & \max (X 1, X 2)= \\
X 2->L 2+Y & (X 1+X 2)-\min (X 1, X 2) \\
L 1+L 2->K & \text { (but is not computed } \\
Y+K->0 & \text { "sequentially") }
\end{array}
$$

Approximate Majority

$$
\begin{aligned}
(X, Y):= & X+Y->Y+B \\
\text { if } X \geq Y \text { then }(X+Y, 0) & Y+X->X+B \\
\text { if } Y \geq X \text { then }(0, X+Y) & B+X->X+X \\
& B+Y->Y+Y
\end{aligned}
$$

Programming any algorithm as a CRN

A CRN is a finite set of reactions over a finite set of species

CRNs are not Turing complete Like Petri nets: reachability is decidable

But unlike Petri nets, CRNs are approximately Turing complete Because reactions have also rates
This make it possible to approximate Turing completeness by approximating test-for-zero in a register machine. The probability of error (in test-for-zero) can be made arbitrarily small over the entire (undecidably long) computation.

Adding polymerization to the model makes it fully Turing complete

Programming any dynamical system as a CRN

For example, take the canonical oscillator: sine/cosine

Programming any dynamical system as a CRN

For example, take the canonical oscillator: sine/cosine

Abstraction of Elementary Hybrid Systems by Variable Transformation

Jiang Liu ${ }^{1}$, Naijun Zhan ${ }^{2}$, Hengjun Zhao ${ }^{1}$, and Liang Zou ${ }^{2}$

Programming any dynamical system as a CRN

For example, take the canonical oscillator: sine/cosine

1. Polynomization: All "elementary" ODEs (all those that include polynomials, trigonometry, exponentials, fractions, and their inverses) can be exactly reduced to just polynomial ODEs.
2. Positivation: All polynomial ODEs can be exactly reduced to polynomial ODEs in the positive quadrant (as differences).

Biomolecular implementation of linear I/O systems

K. Oishi E. Klavins

Programming any dynamical system as a CRN

For example, take the canonical oscillator: sine/cosine

2. Positivation: All polynomial ODEs can be exactly reduced to polynomial ODEs in the positive quadrant (as differences).
3. All positivized ODEs are Hungarian: I.e., all negative monomials have their I.h.s. differential variable as a factor.

Programming any dynamical system as a CRN

For example, take the canonical oscillator: sine/cosine

1. Polynomization: All "elementary" ODEs (all those that include polynomials, trigonomerry, exponentials, fractions, and their inverses) can be exactly reduced to just polynomial ODES.
2. Positivation: All polynomial ODEs can be exactly reduced to polynomial ODEs in the positive quadrant (as differences).
3. All positivized ODEs are Hungarian: l.e., all negative monomials have their l.h.s. differential variable as a factor.
4. Hungarization: All Hungarian ODEs can be exactly reduced to mass action CRNs.

Programming any dynamical system as a CRN

For example, take the canonical oscillator: sine/cosine

5

1. Polynomization: All "elementary" ODEs (all those that include polynomials, trigonomerry, exponentials, fractions, and their inverses) can be exactly reduced to just polynomial ODEs.
2. Positivation: All polynomial ODEs can be exactly reduced to polynomial ODEs in the positive quadrant (as differences).
3. All positivized ODEs are Hungarian: I.e., all negative monomials have their I.h.s. differential variable as a factor.

DNA as a universal substrate for chemical
4. Hungarization: All Hungarian ODEs can be exactly reduced to mass action CRNs. kinetics

Jichik Geors Seelig and Erik Winfree

5. Molecular Programming: All mass action CRNs, up to time rescaling, can be arbitrarily approximated by engineered DNA molecules.

Chemistry is (also) a formal language that we can use to implement any algorithm and any dynamical system with real (DNA) molecules

- Turing complete and "Shannon complete"
- ANY collection of abstract chemical reactions can be implemented with specially designed DNA molecules, with accurate kinetics (up to time scaling).
- Approaching a situation where we can "systematically compile" (synthesize) a model to DNA molecules, run an (automated) protocol, and observe (sequence) the results in a closed loop.

A Model

A Chemical Reaction Network, provided explicitly or (in this case) generated from a higher-level description of the initial strands, according to the DNA strand displacement rules

$$
\begin{aligned}
& \underset{1^{*}}{ } \quad 2^{*} \quad 3^{*} \frac{}{4^{*}}+\xrightarrow{2} \quad 3 \quad \underline{60.0003} \underset{1^{*}}{\frac{2}{2}} \frac{3}{2^{*}} 3^{*} 4^{*} \\
& \stackrel{2}{1^{*}} \frac{2}{2 *} 3^{*} 4^{*}+2 \quad \underset{1^{*}}{\frac{0.0003}{0.1126}} \underset{2^{*}}{\stackrel{1}{2} \quad 23^{*}}
\end{aligned}
$$

Model Semantics (deterministic)
 - ODE semantics of CRNs

State produced by a CRN $\mathcal{C}=(\mathcal{A}, \mathcal{R})$ (species \mathcal{A}, reactions \mathcal{R}) with flux F (r.h.s. of its mass action ODEs) at time t,
from initial state (x_{0}, V, T) (initial concentrations x_{0}, volume V, temperature T):
$\llbracket\left(\left(\mathcal{A}, \mathcal{R}, x_{0}\right), V, T\right) \rrbracket(H)(t)=(G(t), V, T)$
let $G:[0 \ldots H) \rightarrow \mathbb{R}^{|\mathcal{A}|}$ be the solution of $G\left(t^{\prime}\right)=x_{0}+\int_{0}^{t^{\prime}} F(V, T)(G(s)) d s$

Summarizing

- Our models are (chemical) programs
- We can compute their behavior (their final state)
- We can (virtually) run them by integration of the ODEs
- We can (physically) run them by DNA nanotech

Protocols

(those things that know nothing about models)

A Protocol

For DNA gate assembly and activation in vitro

Protocol steps (liquid handing)

Digital Microfluidics

OpenDrop
https://www.youtube.com/watch?v=ncfZWqPm7-4

Purple Drop (UW)
https://misl.cs.washington.edu/projects/fluidics.html

OpenDrop speed test
https://www.youtube.com/watch?v=pSIs9L h3Q0

Digital Microfluidics

- A general, programmable, platform to execute the main liquid-handling operations
- To close the cycle, it can support many automated observation techniques on-board or off-board via peripheral pumps (sequencing, mass spec, ...) although these are all very hardware-dependent.

A Protocol Language

Samples: contiders withoulume, emperature, conenentridions

```
P=
            x (a sample variable)
```



```
            let x= P
            Mix (P
```

Experimental Biological Protocols with Formal Semantics

Alessandro Abate ${ }^{2}$, Luca Cardelli ${ }^{1,2}$, Marta Kwiatkowska ${ }^{2}$, Luca Laurenti ${ }^{2}$, and Boyan Yordanov ${ }^{1}$
${ }^{1}$ Microsoft Research Cambridge
${ }^{2}$ Department of Computer Science, University of Oxford

Protocol Semantics (deterministic)

Each program denotes a final state <concentrations, volume, temperature>
$\llbracket P \rrbracket^{\rho}$ is the final state produced by a protocol P where ρ binds its free variables:

$$
\begin{aligned}
& \llbracket x \rrbracket^{\rho}=\rho(x) \\
& \llbracket x_{0}, V, T \rrbracket^{\rho}=\left(x_{0}, V, T\right) \\
& \llbracket M i x\left(P_{1}, P_{2}\right) \rrbracket^{\rho}= \\
& \quad \operatorname{let}\left(x_{0}^{1}, V_{1}, T_{1}\right)=\llbracket P_{1} \rrbracket^{\rho} \\
& \quad \operatorname{let}\left(x_{0}^{2}, V_{2}, T_{2}\right)=\llbracket P_{2} \rrbracket^{\rho} \\
& \quad\left(\frac{x_{0}^{1} V_{1}+x_{0}^{2} V_{2}}{V_{1}+V_{2}}, V_{1}+V_{2}, \frac{T_{1} V_{1}+T_{2} V_{2}}{V_{1}+V_{2}}\right) \\
& \llbracket \text { let } x=P_{1} \text { in } P_{2} \rrbracket^{\rho}= \\
& \quad \text { let }\left(x_{0}, V, T\right)=\llbracket P_{1} \rrbracket^{\rho} \\
& \quad \text { let } \rho_{1}=\rho\left\{x \leftarrow\left(x_{0}, V, T\right)\right\} \\
& \quad \llbracket P_{2} \rrbracket^{\rho_{1}}
\end{aligned}
$$

$\llbracket l e t x, y=\operatorname{Split}\left(P_{1}, p\right)$ in $P_{2} \rrbracket^{\rho}=$

$$
\text { let }\left(x_{0}, V, T\right)=\llbracket P_{1} \rrbracket^{\rho}
$$

$$
\text { let } \rho_{1}=\rho\left\{x \leftarrow\left(x_{0}, V \cdot p, T\right), y \leftarrow\left(x_{0}, V \cdot(1-p), T\right)\right\}
$$

$$
\llbracket P_{2} \rrbracket^{\rho_{1}}
$$

(Equilibrate semantics)
$\llbracket \operatorname{Dispose}(P) \rrbracket^{\rho}=\left(0^{|\Lambda|}, 0,0\right)$,

Kaemika Microfluidics Compiler

- Mix, split, equilibrate, dispose
- Automatic routing - no geometrical information
- Hot/cold zones
sample A $\{3 \mu \mathrm{~L}, 20 \mathrm{C}\}$
split $B, C, D, E=A$
$\operatorname{mix} F=E, C, B, D$
dispose F

Summarizing

- Our protocols are (liquid handling) programs
- We can compute their behavior (their final state)
- We can (virtually) run them (by simulation)
- We can (physically) run them (by digital microfluidics)

Models together with Protocols

Automating "the whole thing"

- Protocols: sets of steps to direct lab machinery (or people)
- Published in specialized journals. With varying accuracy.
- Models: sets of equations to predict the results of lab experiments
- Published in Auxiliary Online Materials. With lots of typos.
- Protocols know nothing about models
- What hypothesis is the protocol trying to test? It is not written in the protocol.
- Models know nothing about protocols
- What lab conditions are being used to test the model? It is not written in the model.
- While presumably talking about the same system

- Reproducibility crisis
- Experiments are hard to reproduce. (materials, conditions, shortcuts)
- Even models are hard to reproduce! (typos in equations, sketchy diagrams, unexplained graphs, mysterious scripts)
- Similar to classical lifecycle problems in C.S.
- Documentation (model) gets out of step from code (protocol) if their integration is not automated.

An Integrated Description


```
P=
                    x (a sample variable)
```



```
            let x= P
            Mix (P
            let x,y=Split (P
        Equilibrate(P,t) (equilibrate sample for t seconds)
                            Dispose(P) (discard sample)
each sample evolves (via Equilibrate) according to
a given overall CRN:
\mathcal{C}=(\mathcal{A},\mathcal{R})\quad\mathrm{ (species, reactions)}
```

Experimental Biological Protocols with Formal Semantics

Alessandro Abate ${ }^{2}$, Luca Cardelli ${ }^{1,2}$, Marta Kwiatkowska ${ }^{2}$, Luca Laurenti ${ }^{2}$,

${ }^{1}$ Microsoft Research Cambridge
${ }^{2}$ Department of Computer Science, University of Oxford

Joint script
Input $_{1}=\left\langle 1^{*} 2\right\rangle$ Output $=\langle 23\rangle$
Input $_{2}=<34^{*}>$ Gate $=\left\{1^{*}\right\}[23]\left[4^{*}\right\}$
$P_{1}=$ let In $1=\left((\right.$ Input $\left.1,100.0 \mathrm{nM}), 0.1 \mathrm{~mL}, 25.0^{\circ} \mathrm{C}\right)$ in let In $2=\left((\right.$ Input $\left.2,100.0 \mathrm{nM}), 0.1 \mathrm{~mL}, 25.0^{\circ} \mathrm{C}\right)$ in let $G A=\left((\right.$ Output, $\left.100.0 \mathrm{nM}), 0.1 \mathrm{~mL}, 25.0^{\circ} \mathrm{C}\right)$ in let $G B=\left(\left(\right.\right.$ Gate $\left.\left._{B}, 100.0 \mathrm{nM}\right), 0.1 \mathrm{~mL}, 25.0^{\circ} \mathrm{C}\right) \mathrm{in}$ let $s G A,=$ Dispense $\left(G A, p_{1}\right)$ in
let $s G B,=$ Dispense $\left(G B, p_{2}\right)$ in let sIn $1,=\operatorname{Dispense}\left(\operatorname{In} 1, p_{3}\right)$ in
letsIn $2,=$ Dispense $\left(\operatorname{In} 1, p_{4}\right)$ in
Observe(Equilibrate(Mix(Mix(Equilibrate ($\left.\left.\left.\left.\left.\operatorname{Mix}(s G A, s G B), t_{1}\right), \operatorname{sIn} 1\right), \operatorname{sIn} 2\right), t_{2}\right), i d n\right)$.

Program Semantics (deterministic)

Each program denotes a final state <concentrations, volume, temperature>
$\llbracket P \rrbracket^{\rho}$ is the final state produced by a protocol P for a fixed CRN $\mathcal{C}=(\mathcal{A}, \mathcal{R})$:

$$
\begin{aligned}
& \llbracket x \rrbracket^{\rho}=\rho(x) \\
& \llbracket x_{0}, V, T \rrbracket^{\rho}=\left(x_{0}, V, T\right) \\
& \llbracket \operatorname{Mix}\left(P_{1}, P_{2}\right) \rrbracket^{\rho}= \\
& \quad \text { let }\left(x_{0}^{1}, V_{1}, T_{1}\right)=\llbracket P_{1} \rrbracket^{\rho} \\
& \quad \text { let }\left(x_{0}^{2}, V_{2}, T_{2}\right)=\llbracket P_{2} \rrbracket^{\rho} \\
& \quad\left(\frac{x_{0}^{1} V_{1}+x_{0}^{2} V_{2}}{V_{1}+V_{2}}, V_{1}+V_{2}, \frac{T_{1} V_{1}+T_{2} V_{2}}{V_{1}+V_{2}}\right) \\
& \llbracket \text { let } x=P_{1} \text { in } P_{2} \rrbracket^{\rho}= \\
& \quad \text { let }\left(x_{0}, V, T\right)=\llbracket P_{1} \rrbracket^{\rho} \\
& \quad \text { let } \rho_{1}=\rho\left\{x \leftarrow\left(x_{0}, V, T\right)\right\} \\
& \llbracket P_{2} \rrbracket^{\rho_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket \text { let } x, y=\operatorname{Split}\left(P_{1}, p\right) \text { in } P_{2} \rrbracket^{\rho}= \\
& \quad \text { let }\left(x_{0}, V, T\right)=\llbracket P_{1} \rrbracket^{\rho} \\
& \quad \text { let } \rho_{1}=\rho\left\{x \leftarrow\left(x_{0}, V \cdot p, T\right), y \leftarrow\left(x_{0}, V \cdot(1-p), T\right)\right\} \\
& \llbracket P_{2} \rrbracket^{\rho_{1}} \\
& \llbracket \text { Equilibrate }(P, t) \rrbracket^{\rho}= \\
& \quad \text { let }\left(x_{0}, V, T\right)=\llbracket P \rrbracket^{\rho} \\
& \left.\llbracket\left(\mathcal{A}, \mathcal{R}, x_{0}\right), V, T\right) \rrbracket(H)(t) \\
& \llbracket \operatorname{Dispose}(P) \rrbracket^{\rho}=\left(0^{|\Lambda|}, 0,0\right),
\end{aligned}
$$

State produced by CRN $\mathcal{C}=(\mathcal{A}, \mathcal{R})$ with flux F at time t :
$\llbracket\left(\left(\mathcal{A}, \mathcal{R}, x_{0}\right), V, T\right) \rrbracket(H)(t)=$
let $G:[0 \ldots H) \rightarrow \mathbb{R}^{|\mathcal{A}|}$ be the solution of $G\left(t^{\prime}\right)=x_{0}+\int_{0}^{t^{\prime}} F(V, T)(G(s)) d s$ s
$(G(t), V T)$ $(G(t), V, T)$

A Joint Semantics

This semantics gives us ajoint simulation algorithm, connecting chemical simulation with protocol simulation.

In this presentation everything is deterministic. The state of the protocol is passed to the chemical simulator, which computes a new state that it passes to the protocol simulator, and so on.

Kaemika uses such a joint simulation algorithm for stochastic simulation, passing also variance information back and forth between chemical and protocol simulation.
This requires an extension of the above semantics using the Linear Noise Approximation of chemical kinetics, which computes mean and variance of concentrations (both by ODEs, not e.g. by Gillespie algorithm), and a similar extension of the protocol operations.

Stochastic Analysis

- We can ask: what is the probability of a certain outcome given uncertainties in both the protocol and the model?
- Conversely: which parameters of both the protocol and the model best fit the observed result?
- Also, we can use Statistical Modelchecking:

1500 executions including protocol uncertainty due timing and pipetting errors (red).
1500 executions including only model uncertainty about rates of the CRN (yellow).
1500 executions including both sources of uncertainty (blue).

We may estimate by Statistic Model Checking, e.g. the probability that Output will fall in a certain range, given distributions over uncertain model and protocol parameters. 34

Simulating Reaction Networks together with Digital Protocols

Yaemika
 /'kimika/

Search "Kaemika" in the app stores http://lucacardelli.name/kaemika.html

An integrated language for chemical models \& experimental protocols

Deterministic (ODE) and
stochastic (LNA) simulation
Chemical reaction networks (CRNs) and liquid-handling protocols

Reaction scores

Functional scripting

GUI

Kaemika

- A prototype language for
- http://lucacardelli.name/kaemika.html

- Search "Kaemika" in the App stores
- CRN simulation
- Microfluidics simulation
- Reaction graphs
- ODE equations
- Stochastic noise (LNA)

Main features

- Species and reactions
- Characterized by initial values and rates
- "Samples" (compartments) and Protocols
- Isolate species and reactions in a compartment, and mix compartments
- Kinetics (simulation)
- Deterministic (ODE) or stochastic (LNA) for chemical models
- Digital microfluidics for chemical protocols
- Programming abstractions
- Assemble models and protocols as compositions of modules

Species and Reactions

// Lotka 1920, Volterra 1926
// (simplified with all rates = 1)
//==120
number $x 1_{0}$ <- uniform $(0,1) / /$ random $x 1_{0}$ number $\times 2_{0}<-$ uniform $(0,1) / /$ random $\times 2_{0}$

```
species x1 @ x10 M // prey
species x2 @ x2. M // predator
x1 -> x1 + x1 {1} // prey reproduces
x1 + x2 -> x2 + x2 {1} // predator eats prey
x2 -> \emptyset {1} // predator dies
```


equilibrate for 40

Stochastic (LNA) simulation

- For all programs (any CRN, any Protocol)

2AM Oscillator

> do $1=-\mathrm{hi} 1 \cdot \mathrm{lo} 1-0.5 \cdot \mathrm{hi} 2 \cdot \mathrm{lo} 1+\mathrm{lo} 1 \cdot \mathrm{md}+0.5 \cdot \mathrm{lo} 2 \cdot \mathrm{md}$ $\partial \mathrm{hi} 2=-0.5 \cdot \mathrm{hi} 1 \cdot \mathrm{hi} 2-\mathrm{hi} 2 \cdot \mathrm{lo} 2+\mathrm{hi} 2 \cdot \mathrm{md}>_{1}+0.5 \cdot \mathrm{lo} 1 \cdot \mathrm{md}>_{1}$ $\partial \mathrm{lo} 2=0.5 \cdot \mathrm{hi} 1 \cdot \mathrm{md}>_{1}-\mathrm{hi} 2 \cdot \mathrm{lo} 2-0.5 \cdot \mathrm{lo} 1 \cdot \mathrm{lo} 2+\mathrm{lo} 2 \cdot \mathrm{md}>_{1}$ hi $1=-\mathrm{hi} 1 \cdot \mathrm{lo} 1-0.5 \cdot \mathrm{hi} 1 \cdot \mathrm{lo} 2+\mathrm{hi} 1 \cdot \mathrm{md}+0.5 \cdot \mathrm{hi} 2 \cdot \mathrm{md}$ $\partial \mathrm{md}=2 \cdot \mathrm{hi} 1 \cdot \mathrm{lo} 1+0.5 \cdot \mathrm{hi} 1 \cdot \mathrm{lo} 2+0.5 \cdot \mathrm{hi} 2 \cdot \mathrm{lo} 1-\mathrm{hi} 1 \cdot \mathrm{md}-0.5 \cdot \mathrm{hi} 2 \cdot \mathrm{md}-\mathrm{lo} 1 \cdot \mathrm{md}-0.5 \cdot \mathrm{lo} 2 \cdot \mathrm{md}$ $\partial \mathrm{md}>_{1}=0.5 \cdot \mathrm{hi} 1 \cdot \mathrm{hi} 2-0.5 \cdot \mathrm{hi} 1 \cdot \mathrm{md}>_{1}+2 \cdot \mathrm{hi} 2 \cdot \mathrm{lo} 2+0.5 \cdot \mathrm{lo} 1 \cdot \mathrm{lo} 2-\mathrm{hi} 2 \cdot \mathrm{md}>_{1}-0.5 \cdot \mathrm{lo} 1 \cdot \mathrm{md} »_{1}-\mathrm{lo} 2 \cdot \mathrm{md} »_{1}$

 $\operatorname{cov}(\mathrm{lo} 1, \mathrm{hi}) \cdot \operatorname{lo2}+0.5 \cdot \operatorname{cov}(\mathrm{md}, \mathrm{hi} 2) \cdot \operatorname{lo2}+\operatorname{cov}(\mathrm{lo} 1, \mathrm{hi} 2) \cdot \mathrm{md}+0.5 \cdot \operatorname{cov}(\mathrm{lo}, \mathrm{hi} 2) \cdot \mathrm{md}+\operatorname{cov}(\mathrm{lo} 1, \mathrm{hi} 2) \cdot \mathrm{md}>_{1}-0.5 \cdot \operatorname{lo} 1 \cdot \operatorname{var}(\mathrm{hi} 2)+0.5 \cdot \mathrm{md}>_{1} \cdot \operatorname{var}(\mathrm{lo} 1)$

$\partial \operatorname{cov}(\mathrm{lo1} 1, \mathrm{md})=2 \cdot \operatorname{cov}(\mathrm{lo} 1, \mathrm{hi1}) \cdot \mathrm{lo1}-\operatorname{cov}(\mathrm{hi1}, \mathrm{md}) \cdot \mathrm{lo} 1-\operatorname{cov}(\mathrm{lo} 1, \mathrm{md}) \cdot \operatorname{lo} 1-\mathrm{hi} \cdot \mathrm{lo1}-0.5 \cdot \mathrm{hi2} \cdot \mathrm{lo1}+0.5 \cdot \operatorname{cov}(\mathrm{lo1}, \mathrm{hi1}) \cdot \mathrm{lo2}-0.5 \cdot \operatorname{cov}(\mathrm{lo1} 1 \mathrm{md}) \cdot \operatorname{lo2}-\operatorname{cov}(\mathrm{lo} 1, \mathrm{hi11}) \cdot \mathrm{md}+0.5 \cdot \operatorname{cov}(\mathrm{lo} 1, \mathrm{lo2} 2) \cdot \mathrm{hi1}-0.5$ $\cdot \mathrm{md}+2 \cdot \mathrm{hi} 1 \cdot \operatorname{var}(\mathrm{lo} 1)+0.5 \cdot \mathrm{hi2} \cdot \operatorname{var}(\mathrm{lo} 1)+\mathrm{lo} 1 \cdot \operatorname{var}(\mathrm{md})+0.5 \cdot \mathrm{lo2} \cdot \operatorname{var}(\mathrm{md})-\mathrm{md} \cdot \operatorname{var}(\mathrm{lo} 1)$

Writing Models Compositionally

- Embedded chemical notation

Programs freely contain both chemical reactions and control flow
Can generate unbounded-size reaction networks

- Rich data types
numbers, species, functions, networks, lists, flows (time-courses)
flows are composable functions of time used in rates, plotting, and observation
- Modern abstractions

Functional: programs take data as parameters and produce data as results
Monadic: programs also produce effects (species, reactions, liquid handling)
Nominal: lexically scoped chemical species (species are not "strings")

Ex: Predatorial

```
```

function Predatorial(number n) {

```
```

function Predatorial(number n) {
if n = 0 then
if n = 0 then
define species prey @ 1 M
define species prey @ 1 M
prey -> 2 prey // prey reproduces
prey -> 2 prey // prey reproduces
report prey
report prey
yield prey
yield prey
else
else
define species predator @ 1/n M
define species predator @ 1/n M
species prey = Predatorial(n-1)
species prey = Predatorial(n-1)
prey + predator ->{n} 2 predator // predator eats
prey + predator ->{n} 2 predator // predator eats
predator -> Ø // predator dies
predator -> Ø // predator dies
report predator
report predator
yield predator
yield predator
end
end
}
}
species apexPredator = Predatorial(5)
species apexPredator = Predatorial(5)
equilibrate for 50

```
```

equilibrate for 50

```
```

<= Demo: Predatorial

Describing a Protocol

- Samples (e.g., test tubes)
- Are characterized by a volume and a temperature
- Contain a specified set of species
- Evolve according to reactions that operates on those species
- Isolate species and reactions
- Protocol Operations (e.g., liquid handling)
- Accept and produce samples
- Accepted samples are used up (they can only be operated-on once)

Samples

- Samples contain concentrations of species, acted over by reactions.
- Each sample has a fixed volume and a fixed temperature through its evolution.
- Sample concentrations are in units of molarity $\mathrm{M}=\mathrm{mol} / \mathrm{L}$.
- The default implicit sample is called the vessel $\{1 \mathrm{~mL}, 20 \mathrm{C}\}$

```
species {c} // a species for multiple samples
```

sample $A\{1 \mu \mathrm{~L}, 20 \mathrm{C}\} \quad / /$ volume and temperature
species a @ 10 mM in A // species local to A
amount c @ 1 mM in $\mathrm{A} \quad / /$ amount of c in A
$a+c->a+a$
sample $B\{1 \mu \mathrm{~L}, 20 \mathrm{C}\}$
species b @ 10 mM in $B \quad / /$ species local to B amount c @ 1mM in B // amount of c in B $b+c->c+c$
<= Demo: MixAndSplit

```
An amount can also be given in
grams (if molar mass is specified).
The resulting concentration is then
relative to sample volume.
species {NaCl#58.44}
sample C {1mL, 20C}
amount NaC1 @ 8g in C
```

Reactions can be specified with
Arrhenius parameters \{collision
frequency, activation energy\}.
The reaction kinetics is then
relative to sample temperature T.
$a+c->\{2,5\} a+a$
// rate is $2 * \mathrm{e}^{\wedge}(-5 /(R * T))$

Ex: Serial Dilution (recursive protocol)

```
network SerialDilution(number count, sample s, network f) {
    if count > 0 then
        sample solvent {9*observe(volume,s) L, observe(kelvin,s) K}
        mix s = s, solvent
        mix s = s, solvent
        split s, dilution = s by 0.1, 0.9
        f(dilution)
        SerialDilution(count-1, s, f)
    end
}
//initial sample to be diluted:
```

sample init $\{1 \mathrm{~mL}, 25 \mathrm{C}\}$ species A @ 1M in init species B @ $1 M$ in init
$A+B->\{20\} A$
A $\rightarrow \varnothing$
//apply this network to each dilution;
//note that this invokes a simulation
//each time in each solution

```
network test(sample s) {
    equilibrate s for 10
    dispose s
}
```

//dilute 4 times

SerialDilution(4, init, test)

Prepare a series of increasingly diluted solutions and apply a network f to each (f can add species and reactions to the solutions)

```
RESULT:
sample init {1mL, 298.2K} {A = 1M, B = 1M}
sample s2 {1mL, 298.2K} {A = 100mM, B = 100mM}
sample s4 {1mL, 298.2K} {A = 10mM, B = 10mM}
sample s7 {1mL, 298.2K} {A = 1mM, B = 1mM}
sample s10 {1mL, 298.2K} {A = 100uM, B = 100uM}
```


Digital Microfluidics Compiler

- Mix, split, equilibrate, dispose
- Automatic routing - no geometrical information
- Hot/cold zones
sample A $\{3 \mu \mathrm{~L}, 20 \mathrm{C}\}$
split $B, C, D, E=A$
$\operatorname{mix} F=E, C, B, D$
dispose F

<= Demo: MixAndSplit

Extracting the Model and the Protocol

From the script
species $\{c\}$
sample A
species a @ 1M in A amount c @ 0.1M in A
$a+c->a+a$
equilibrate $A 1=A$ for 1
sample B
species b @ $1 M$ in B
amount c @ 0.1M in B
b + c -> C + c
equilibrate $\mathrm{B} 1=\mathrm{B}$ for 1
split $C, D=A 1$ by 0.5
dispose C
$\operatorname{mix} E=D$ with $B 1$
$a+b->b+b$
equilibrate $F=E$ for 20 dispose F

The protocol

The (final) model (sample E)

STATE_5
sample E \{1.5mL, 293.2 K$\}$ \{
$a=354.5 \mathrm{ml}$
$c=178 \mathrm{mM}$
$b=0.5674 \mathrm{M}$
consumed
a + c -> a + a
$b+c-c+c$
a $+b$-> +
KINETICS for STATE_5 (sample E) for 20 time units: $\partial a=a * c-a * b$ $\partial c=c * b-a * c$
$\partial b=a * b-c * b$

Extracting the Hybrid Transition System

From the script species $\{c\}$
sample A
species a @ 1M in A amount c @ 0.1M in A
$a+c->a+a$
equilibrate $A 1=A$ for 1

sample B

species b @ $1 M$ in B
amount c @ 0.1M in B
b + c -> C + C
equilibrate $B 1=B$ for
split $C, D=A 1$ by 0.5
dispose C
$\operatorname{mix} E=D$ with $B 1$
$a+b->b+b$
equilibrate $\mathrm{F}=\mathrm{E}$ for 20 dispose F

Kaemika: Extra features

Extra features

- General kinetic rates
- Fractions, rational powers, exponentials, trigonometry. E.g., $x->y$ y $\{\{1 / x\}\}$
- Work with both deterministic and stochastic simulation and equation-extraction
- Even triggers (discontinuous waveforms)
- Direct ODE notation
- Instead of a reaction, just write an ODE like $\partial x=s \cdot y-s \cdot x$
- This is translated to the reaction $\varnothing->x\{\{s \cdot y-s \cdot x\}\}$ using general kinetic rates
- Timeflows (trajectories as first-class values)
- Programmable plot reports (e.g., var(2 • a - $3 \cdot b)$)
- Capture timeflow outputs to combine (e.g., avg) and re-plot/export them later
- Mass action compiler
- Turn any elementary ODE system (with fractions, rational powers, exponentials, trigonometry) into an equivalent system of pure mass action reactions.
- Programmable random numbers and distributions
- As in MIT's Omega probabilistic language, with rejection sampling.
- Export
- SBML, ODE, Bitmap, SVG, GraphViz

Reaction scores (graphical repesestation of reaction nemorks

Horizonal lines: species. Vertical stripes: reactions.
Blue: reagents. Red: products. Green: catalysts.

Reactants and products

Catalyst

Repeated species

Catalyst but no reactants

Reactants but no products

Catalyst but no products

Products but no reactants

Autocatalyst

Reaction Scores vs. Reaction Graphs

- 2AM Oscillator

> hil + md -> 2hil
lo1 + hi1 -> lo1 + md
$1 o 1$ + md -> $2 l o 1$
hi2 + lo1 -> hi2 + md $\{0.5\}$ hi2 + md -> hi2 + hi1 $\{0.5\}$ lo2 + hi1 -> lo2 + md $\{0.5\}$ $102+h i 1->102+\operatorname{md}\{0.5\}$
$\mathrm{lo} 2+\mathrm{md}->\mathrm{lo} 2+\mathrm{lo} 1\{0.5\}$ lo2 + md -> lo2 + lo1 $\{0.5\}$
hi2 + lo2 -> hi2 + md $>_{1}$ hi2 + lo2 -> hi2 + md» hi2 + md» ${ }_{1}$-> 2hi2 lo2 + hi2 -> lo2 + md» ${ }_{1}$ $102+m d »_{1}->21 o 2$ $101+l o 2->l o 1+m d>_{1}\{0.5\}$ $101+m d »_{1}->l o 1+h i 2\{0.5\}$ hi1 + hi2 -> hi1 + md» ${ }_{1}\{0.5\}$ hi1 + hi2 -> hi1 + md» $1_{1}\{0.5\}$
hi1 + md» ${ }_{1}$-> hi1 + lo2 $\{0.5\}$

GraphViz

Mass Action Compiler

- Lorenz chaotic attractor

$$
\begin{aligned}
& \mathrm{x}^{+}+\mathrm{x}^{-}->\varnothing \\
& \mathrm{y}^{-}>\mathrm{y}^{+}+\mathrm{x}^{+}\{10\} \\
& \mathrm{x}^{-} \rightarrow \mathrm{y}^{-}+\mathrm{x}^{+}\{10\}
\end{aligned}
$$

路
Initial:
$\mathrm{x}^{+}=1$
$x=1$
$x^{-}=0$
$y^{+}=0$
$y^{+}=0$
$y^{-}=0$
$\mathrm{z}^{+}=28$
$\mathrm{z}^{-}=0$

Advanced Scripting

Global Sensitivity Analysis (of a Lotka-Volterra system)

- A function f to run one simulation (ri are the input parameters to be perturbed)
<- define D yield E returns the value of E after executing the statements D
<- Make a new sample S to contain species and reactions for simulation
<- Lotka-Volterra prey species x1 (initial conditions could be a parameter as well)
<- Lotka-Volterra predator species x2
<- Prey reproduces, with perturbed rate r1
<- Predator eats prey, with perturbed rate r2
<- Predator dies, with perturbed rate r3
<- Simulate the system up to time 2.5 (first peak of the oscillation)
<- Return the output concentrations of $\mathrm{x} 1, \mathrm{x} 2$ from S at time 2.5 as pairs
random $X($ omega $w)\{$
$\mathrm{f}(1+(\mathrm{w}(0)-0.5) / 10,1+(\mathrm{w}(1)-0.5) / 10,1+(\mathrm{w}(2)-0.5) / 10)$
\}
draw 2000 from X

x1 sensitivity to random
<10\% parameter variations at time 2.5

```
function f(number r1 r2 r3) {
    define
    sample S
    species x1 @ 0.66 M in S
    species x2 @ 0.44 M in S
    x1 -> x1 + x1 {r1}
    x1 + x2 -> x2 + x2 {r2}
    x2 -> \varnothing
    equilibrate }S\mathrm{ for 2.5
    yield [observe(x1,S), observe(x2,S)]
}
```

<- Create a bivariate random variable X over uniform[0.1) sample spaces $w(i)$
<- producing random instances $f(1+e 1,1+e 2,1+e 3)=[x 1, x 2]_{e_{1, ~ e 2, e 3, ~},=2.5}$ with e1, e2, e3 being 10% independent perturbations of the parameters
<- Produce a density plot of 2000 instances drawn from X i.e. a plot of the distributions of $X[0]=x 1$ and $X[1]=x 2$ at time 2.5 vertical bars are mean and standard deviation
N.B., consider also exporting your Kaemika model to SBML and use the Sobol' method of global sensitivity analysis in e.g. Copasi.

Conclusions

Experimental biological protocols with formal semantics

Alessandro Abate, Luca Cardelli, Marta Kwiatkowska,
Luca Laurenti, Boyan Yordanov. CMSB 2018.
Kaemika app - Integrating protocols and chemical simulation Luca Cardelli. CMSB 2020.

Kaemika User Manual

http://lucacardelli.name/Papers/Kaemika\ User\ Manual.pdf
Integrated modeling
Of chemical reaction networks and protocols
How the Kaemika app supports it
Why it needs a new language for smooth integration

Closed-loop modeling, experimentation and analysis
For complete lab automation
To "scale up" the scientific method

Thanks to:
Gold (parser generator)
OSLO (ODE simulator)
C\#/Xamarin (IDE)
App store reviewers
NO thanks to:
XAML (general obfuscator)
App store certificates
Dark mode support

